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The interaction of ultrashort laser pulses with matter is a topic of growing interest. In particular, recent
developments on free-electron lasers have opened an unexplored field in which many interesting physical
phenomena are to be expected. Since hydrodynamic descriptions of the interaction process need a microscopic
“input,” a quantum statistical theory of energy absorption by matter is required. We present a kinetic theory of
collisional absorption in dense plasmas and analyze the electron-ion collision frequency in warm dense alu-
minum in dependence on laser frequency and temperature.
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I. INTRODUCTION

Due to the impressive progress in laser technology, which
makes femtosecond laser pulses of very high intensity avail-
able in laboratory experiments �1–3�, interaction of matter
with electromagnetic fields has become a problem of current
interest. In particular, there is a recent development in the
direction of shorter wavelengths and higher photon energies
connected with free-electron lasers �FEL�. FEL projects are
in progress at SLAC �Stanford� �4� and at DESY �Hamburg�
�5,6�. At DESY, the vacuum ultraviolet FEL �VUV-FEL�
started its operations in 2005 with a wavelength of 32 nm �7�
after a test facility already demonstrated its great capacities
for high-flux and time-resolved experiments at about 100 nm
wavelength �8�. Perspectively, the building of an x-ray FEL
is planned.

Besides the study of the fundamentals of laser-matter in-
teraction �e.g., plasma creation, etc.�, the development opens
new possibilities for the diagnostics of dense strongly
coupled plasmas over a broad temperature range, i.e., in the
so-called warm dense matter regime. An important diagnos-
tic tool is Thomson scattering, which has been intensely in-
vestigated both experimentally �9� and theoretically �10–12�.

Attempts to investigate the laser-matter interaction by
means of a hydrodynamic description require an accurate
treatment of the microscopic “input.” A key quantity here is
the electron collision frequency that characterizes the colli-
sional absorption and determines macroscopic parameters as
the dielectric constant and, therefore, the refractive index.

A hydrodynamic description of short-pulse laser interac-
tion with dense matter has been presented, e.g., by Eidmann
et al. �13� for aluminum at solid-state density. In that work,
the problem of determining the collision frequency over a
broad temperature range is solved by interpolating between
two known limiting cases, namely the Spitzer formula for the
hot plasma and the electron-phonon collision frequency for
the cold solid. The interpolation is done using the harmonic
mean, and unphysically high values in the intermediate tem-
perature range of 1–100 eV are cut by a plausible physical
criterion. The respective collision frequency is shown in Fig.
1.

A similar treatment of laser absorption in aluminum has
been presented by Fisher et al. �14�. There, the electron-
phonon collisions are treated more rigorously, but again the
Spitzer limiting case is adopted.

Thus, there is an urgent need for a theoretical investiga-
tion of the collision frequency for solid-state density matter
in the range of moderate temperatures, i.e., in the warm
dense matter regime. A powerful tool for such a description
is given by quantum kinetic theory �15–17�. An alternative
approach is molecular-dynamics simulation �17,18�. The
goal of the present paper is �i� to present the theoretical back-
ground for the quantum kinetic description of collisional ab-
sorption in dense plasmas, �ii� to derive a general expression
for the electron-ion collision frequency �ei��� valid also for
high fields, and �iii� to present some results for �ei��� for
dense aluminum. Concerning �i� and �ii�, we follow the ap-
proach given in �15–17�. For an extension to partially ion-
ized plasmas including bound-free transitions, see �16,19�.

II. THEORETICAL BACKGROUND

A. Basic equations

In the present paper, we consider the physical phenom-
enon of collisional absorption, i.e., absorption due to particle
scattering, a process connected with an energy transfer be-

FIG. 1. Collision frequency of solid Al as a function of the
temperature. The figure is taken from Ref. �13�.
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tween plasma and field. This quantity is determined by the
electric current density j�E� due to the field E,

dWkin

dt
+

dWpot

dt
= j · E , �1�

i.e., the change of the total energy of the system of particles
is equal to j ·E, which is in turn the energy loss of the elec-
tromagnetic field due to Poynting’s theorem.

A central quantity is, therefore, the electrical current den-
sity defined by

j�t� = �
a

ja�t� = �
a
� d3p

�2� � �3

eapa

ma
fa�pa,t� , �2�

where fa�pa,t� is the single-particle gauge invariant Wigner
function of the species a �a=e , i for electrons and ions, re-
spectively�. For the determination of fa, we start from the
kinetic equation �20�

� �

�t
+ eaE�t� · �ka� fa�ka,t� = Ia�ka,t� , �3�

where the collision integral is given by �V being the volume
and Vab the interaction potential�

Ia�p,t� = �
b

1

V � d3q d3p1 d3p2

�2� � �6 ���p − p1 − q� − ��p − p1��

� Vab�q�Fab�p1,p1 + q,p2,p2 − q,t� . �4�

The two-particle density matrix is connected with the corre-
lation function of density fluctuations by �15,21�

Fab�t� = �i � �2ga
��1t,1�t�gb

��2t,2�t�

+ �i � �Lab
� �11�t,22�t� �a � b� , �5�

where the latter function is defined by

�i � �Lab
� �11�t,22�t�� = 	��̂b�22�t����̂a�11�t�
 �6�

with ��̂a�11�t�=	a
+�1� , t�	a�1, t�− 		a

+�1� , t�	a�1, t�
.
The balance equation for the electrical current density fol-

lows from Eq. �3� �15�:

d

dt
ja�t� − na

ea
2

ma
E�t� = �

b�a
� d3q

�2� � �3

eaq

ma
Vab�q�Lba

� �q;t,t� .

�7�

The correlation function Lba
� follows from its equation of

motion defined on the Keldysh contour �for brevity all argu-
ments are suppressed�,

Lab = 
ab + �
c,d


acVcdLdb. �8�

In a plasma in a strong laser field, the coupling between
species with different charges can be considered to be weak,
whereas the coupling between particles with equal charges is
not affected by the field. Then the polarization functions 
ab
can be adopted to be diagonal, 
ab=�ab
a, and an approxi-
mation in lowest order of Vie is appropriate. We find �21�

Lei
��q;t,t�� =� dt̄ �Lee

��q;t, t̄�Vei�q�Lii
A�q; t̄,t��

+ Lee
R �q;t, t̄�Vei�q�Lii

��q; t̄,t��� . �9�

Here the functions Laa
R/A and Laa

� are density response func-
tions and correlation functions of density fluctuations, re-
spectively, of the electron and ion subsystems with Laa
=
a+
aVaaLaa.

For the electron current �7� it follows that

d

dt
je�t� − ne

ee
2

me
E�t�

= Re� d3q

�2� � �3

eeq

me�
Vei�q�2�i�

t0

t

dt̄ �See�q;t, t̄�Vei�q�

�Lii
A�q; t̄,t� + Lee

R �q;t, t̄�Vei�q�Sii�q; t̄,t�� , �10�

where we have introduced the dynamical structure factor

2�Saa�q;t, t̄� =
i�

2
�Laa

� �q;t, t̄� + Laa
� �q;t, t̄�� . �11�

The functions in the collision term depend on the current and
the electrical field. This dependence can be made explicit if
one assumes that each subsystem �electrons and ions� is in
local equilibrium with a temperature Ta with respect to a
coordinate frame moving with the mean velocity ua�t�
�22,23�. The transformation between such a coordinate sys-
tem and a system at rest is given by r̃=r−�t0

t dt̄ua�t̄�. The
Fourier transforms in the two coordinate systems are con-
nected by

Laa�q,t1t2� = e−�i/��q·�t2

t1dt̄ ua�t̄�L̃aa�q,t1 − t2� , �12�

where L̃aa denotes the local equilibrium function depending
on the time difference only. One gets �omitting the tilde from
now on�

d

dt
j�t� = 0�p

2E�t� − Re� d3q

�2� � �3q
ee

me
Vie�q�

2�

i�

��
t0

t

dt̄ �See�q;t − t̄�Vei�q�Lii
A�q; t̄ − t�

+ Lee
R �q;t − t̄�Vei�q�Sii�q; t̄ − t��

�exp�−
i

�

1

neee
q · �

t̄

t

dt̄1j�t̄1�� �13�

Thus, the source term in the current balance equation de-
pends on the current itself in a nonlinear way. In order to
proceed with the analysis, we will consider weak fields and
strong high-frequency fields as limiting cases.

B. Weak fields

In the case of weak fields, we can expand the exponential
function and get a term linear in j. Adopting a harmonic time
dependence of the electric field, we have for the current
j�t�= j���e−i�t+ j*���ei�t and get from the above equation
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j��� =
0�p

2

− i� + �ei���
E��� , �14�

which is a generalized Drude equation. The complex
electron-ion collision frequency �ei,

�ei��� = i
niei

2

neme�
2 � d3q

�2� � �3

1

�
�q · n�2Sii�q�V�q��ee

−1�q;��

− ee
−1�q;0�� , �15�

is defined via the dielectric function of the electron sub-
system,

ee
−1�q;�� = 1 + e2V�q�Lee�q;�� , �16�

and the static ion-ion structure factor Sii�q�. Using for ee
−1 the

random phase approximation �RPA�, this is the well-known
expression first given by Bekefi �24� and later, for instance,
by Reinholz et al. �25�. One gets immediately the dynamical
conductivity

���� =
0�pl

2

− i� + �ei���
. �17�

In the limit of high frequencies, one gets ������0�pl
2 /�2�

��i�+�ei���� �26�, and the averaged absorbed energy is
given by

	j · E
 
1

T
�

t−T

T

dt�j�t�� · E�t��

=
�pl

2

�2 Re �ei���
0E0

2

2

=
�pl

2

�2 Re �ei���	0E2
 . �18�

C. Strong high-frequency fields

In the case of strong fields, the dependence on the electric
field has an exponential form and causes, therefore, nonlin-
ear effects like multiphoton absorption and the occurrence of
higher harmonics in the current. We can apply on the right-
hand side of Eq. �13�

j � j0 = �
a

ea
2na

ma
�

t0

t

dt�E�t�� , �19�

i.e., collisions are regarded as small perturbations compared
to the strong field, which corresponds to the so-called Silin
ansatz �27�. For a harmonic electric field, E=E0cos �t, the
exponential factor in Eq. �13� can then be expanded into a
Fourier series. For the current balance, it follows that

d

dt
je�t� − ne

ee
2

me
E�t� = Re� d3q

�2� � �3

2�eeq

me�
Vei

2 �q�

��
m

�
n

�− i�m+1Jn�q · v0

��
�

�Jn−m�q · v0

��
�eim�t

��
−�

� d�̄

2�
�See�q;�̄ − n��Lii

A�q;�̄�

+ Lee
R �q;�̄ − n��Sii�q;�̄�� �20�

with the one-component structure factors and response func-
tions Saa and Laa, respectively �15,21�. We will assume in
the rest of this section that the subsystems are in local ther-
modynamic equilibrium with temperatures Te and Ti, respec-
tively �the influence of non-Maxwellian distribution func-
tions was considered in �28�, and a numerical solution of a
kinetic equation for a strong laser field was performed in
�29��. Jl is the Bessel function of lth order and v0
= �ee /me�E0 /� is the quiver velocity. Note that there is the
same functional dependence of the electron and ion contri-
butions to the screening in Eq. �20�. The ion functions, how-
ever, are localized in the low-frequency region, i.e., for a
high-frequency electric field, �̄ can be neglected in compari-
son with n�. In this case, the first term in the brackets in Eq.
�20� vanishes because �d�̄Lii

A�q ; �̄�=0, and for the current it
follows that

je�t� − �
−�

t

dt̄
neee

2

me
E�t̄� = Re� d3q

�2� � �3�
m

�
n

ee

me

q

m � �
Vei

2 �q�

��− i�m+2eim�tJn�q · v0

��
�

�Jn−m�q · v0

��
�Lee

R �q;− n��niSii�q� .

�21�

The screening by the ions is accounted for by the static struc-
ture factor Sii�q� defined by

Sii�q� 
1

ni
� d�̄Sii�q,�̄� = 1 + ni� d3r�gii�r� − 1�e−�i/��q·r,

�22�

where gii�r� is the pair distribution function. Lee
R is the exact

density response function of the electron subsystem which
can be approximated using local field corrections �21�.

The Fourier coefficients of the current can be identified
easily from Eq. �21�. Only the odd harmonics are allowed
due to the symmetry of the interaction, cf. �30�. The cycle
averaged dissipation of energy is given by

	j · E
 = ni� d3q

�2� � �3

Vei
2 �q�

Vee�q�
Sii�q,Ti�

� �
n=−�

�

n�Jn
2�q · v0

��
�Im ee

−1�q,− n�,Te� . �23�

Then we get for the collision frequency
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Re �ei��� =
4ni

0E0
2

�2

�pl
2 � d3q

�2� � �3

Vei
2 �q�

Vee�q�
Sii�q,Ti�

��
n=1

�

n�Jn
2�q · v0

��
�Im ee

−1�q,− n�,Te� ,

�24�

where Vei is the electron-ion interaction potential. This for-
mula contains interesting many-particle and field effects: �i�
The influence of the field manifests itself in the sum over n
reflecting multiphoton processes. While any n-photon pro-
cess is determined by the inverse dielectric function at the
frequency n�, the amplitude is given by the square of the
Bessel function of order n. �ii� Dynamical screening and cor-
relations in the electron subsystem are described by the di-
electric function ee. �iii� The ionic structure factor Sii con-
tains the correlations of the ion subsystem.

III. NUMERICAL EVALUATION

In order to evaluate Eq. �24�, the quantities entering the
right-hand side have to be specified. We apply the following
approximations:

�i� The dielectric function of the electrons ee is calculated
in the random phase approximation �RPA�,

Im ee
−1�q,�� = −

Im ee�q,��
�ee�q,���2

�25�

with

Im ee�q,�� =
e2

0

�2

q2 � d3q

�2� � �3����� + E�p� − E�p + q��

��f�p� − f�p + q�� , �26�

Re ee�q,�� = 1 +
e2

0

�2

q2 P� d3q

�2� � �3

f�p� − f�p + q�
�� + E�p� − E�p + q�

.

�27�

�ii� The electron-ion interaction is in general given by the
interaction of a point charge �electron� with a charge cloud
�ion�. Its determination is a complicated task for many-
electron ions. We, therefore, replace it in a first approxima-
tion by the Coulomb interaction, which is justified for not too
high densities. Then we get

Vei
2 �q�

Vee�q�
= Z2Vee�q� =

Z2e2

4��0

�2

q2 . �28�

�iii� The static ionic structure factor is given by Eq. �22�,
where the pair distribution function g obeys the Ornstein-
Zernike equation,

h�r� = g�r� − 1 = c�r� + n� d3r�c��r − r���h�r�� . �29�

The latter equation can be solved numerically in the hyper-
netted chain �HNC� approximation,

g�r� = exp�− �V�r� + h�r� − c�r�� . �30�

Figure 2 shows results for Sii obtained by HNC calcula-
tions in comparison with the free-particle case S1.

A. Weak fields

In the case of weak fields, the amplitudes for higher-order
photon processes are small and can be neglected compared to
that of the single-photon process. Furthermore, in the series
expansion of the Bessel function �which is here, in principle,
an expansion in powers of the field�, the first term dominates.
Thus, we can replace in Eq. �24�

�
n=1

�

n�Jn
2�q · v0

��
�Im ee

−1�q,− n�,Te�

� �J1
2�q · v0

��
�Im ee

−1�q,− �,Te�

�
�

4
�q · v0

��
�2

Im ee
−1�q,− �,Te� . �31�

For the collision frequency, we obtain

Re �ei��� =
Z2e4ni

6�20
2me

2�3�3

�2

�pl
2 �

0

�

dqq2Sii�q,Ti�

�Im ee
−1�q,− �,Te� . �32�

We calculate the collision frequency for aluminum at
solid-state density, ni=6�1022 cm−3. The charge state of the
ions is assumed to be Z=3. Figure 3 shows Re�ei as a func-
tion of the laser frequency with and without inclusion of the
ionic structure factor. The electron temperature is 105 K. In
the case of uncorrelated ions �Sii=1�, the collision frequency
exhibits the well-known behavior with a plateau for small
frequencies and a typical resonance peak at �=�pl �25,30�.
Qualitatively, the behavior is the same if the structure factor
is taken into account. However, the plateau height is reduced
significantly and the resonance is much less pronounced.

In Fig. 4, the temperature dependence of the collision fre-
quency is shown. Again, the HNC result for the ionic struc-
ture factor is compared with the uncorrelated case. The figure
shows the situation of an isothermal plasma, Ti=Te. A two-

FIG. 2. Ion-ion structure factor for aluminum at solid-state den-
sity, �=2.7 g/cm3 �corresponding to an ion density of ni=6
�1022 cm−3� from HNC calculations for several temperatures. The
effective ion radius is chosen to be r0=0.054 nm =1.05aB �the ra-
dius of Al3+ ions in a crystal �31��.
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temperature plasma with Te�Ti is the experimentally more
realistic situation �32,33�, for a theoretical analysis see, e.g.,
�34,35�. However, the quantitative influence on the collision
frequency is small. Two different laser wavelengths have
been assumed: �a� an optical laser with �=800 nm, and �b� a
VUV-FEL with �=32 nm �corresponding to the current op-
eration of the VUV-FEL at DESY, Hamburg�. Obviously, the
structure factor has a significant quantitative influence only
at lower ion temperatures, while it does not change the result
qualitatively, cf. also calculations for hydrogen in �17�.

The deviation from the Spitzer limiting case at high tem-
peratures can be overcome by taking into account higher
moments of the distribution function. This has been analyzed
by Reinholz et al. �25�. They derived a frequency-dependent
renormalization factor that describes the effects of higher
moments. However, at lower temperatures �higher degen-
eracy� a single-moment approximation is sufficient.

For low temperatures, T�104 K, our model is, of course,
not sufficient. At lower temperatures, the electron–phonon
interaction is the dominating absorption process and, there-
fore, gives the main contribution to the collision frequency.
This will be discussed later.

B. Strong fields

In the case of stronger fields, the multiphoton processes
�cf. Eq. �24�� have finite amplitudes that cannot be neglected
compared to that of the single-photon process. The collision
frequency takes the form

Re�ei��� =
Z2e2ni

�20
2 � E0

2

�2

�pl
2 �

0

�

dqSii�q,Ti�

��
n=1

�

n� Imee
−1�q,− n�,Te��

−1

1

dzJn
2� eE0q

me � �2z� .

�33�

Evidently, the numerical effort is now much greater than in
the weak-field case. One additional integral has to be solved,
the dielectric function has to be computed n times �at the
frequencies n��, and the summation over n has to be per-
formed.

The Bessel functions show rapid oscillations for large ar-
guments. Therefore, we use the following asymptotic expres-
sion for In�a�=�0

1dzJn
2�az� in the limit of large a �i.e., strong

field, large q / small �� �22,36�:

In�a� =
1

�a
arcosh�a

n
�, a � n . �34�

On the other hand, for small a �weak field, small q / large ��,
from the series expansion of the Bessel function it follows
that

In�a� =
1

2n + 1
� an

2nn!
�2

. �35�

Figure 5 shows the real part of the dynamic collision fre-
quency in dependence on the laser frequency for several field
strengths in comparison with the linear response case. We
see that, up to fields corresponding to an intensity of I
�1012 W/cm2, essentially the linear response result is repro-

FIG. 3. Real part of the electron-ion collision frequency vs laser
frequency for aluminum. System parameters: see Fig. 2. The result
using the HNC static ion-ion structure factor is compared with the
free-particle case.

FIG. 4. Real part of the electron-ion collision
frequency vs electron temperature for aluminum
�ni=6�1022 cm−3, Ti=Te� for two different laser
wavelengths: �a� �=800 nm, �b� �=32 nm. The
HNC result for Sii is compared with the free-
particle case. In addition, the limiting case for
high T �Spitzer formula� is shown.
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duced. Only for intensities I�1014 W/cm2 do deviations
from the plateau behavior at ���pl occur, i.e., Re�ei drops
significantly for small frequencies.

The behavior of the collision frequency in dependence on
the temperature is shown in Fig. 6 for two different laser
wavelengths: 800 nm �a� and 32 nm �b�. We again point out
that Re�ei can be described by the linear response case up to
rather high fields. In the case of the optical laser with �
=800 nm, deviations from the weak-field behavior occur at
I�1014 W/cm2. For the VUV-FEL ��=32 nm�, this limit
lies even at I�1017 W/cm2 �for comparison: the atomic field
strength, i.e., the field of the proton at 1aB, corresponds to
I�3.5�1016 W/cm2�. At high temperatures, all curves
agree with the weak-field result.

In order to give a quantitative measure for the strength of
the field, it is convenient to consider the ratio of the quiver
velocity v0 to the thermal velocity vth. Since v0�E0 /� and
vth��T, the field influence increases with decreasing tem-
perature and frequency, which is obvious in Figs. 5 and 6.

C. Electron-phonon collisions

In order to compare our results with those obtained in
�13,14�, we still have to include the contribution of the

electron-phonon interaction to the dynamic collision fre-
quency. This contribution dominates at low temperatures,
i.e., in the solid state.

Eidmann et al. use a formula derived in �37� which for the
cold solid reads �Eq. �3� of Ref. �13��

�e-ph � 2ks
e2kBTi

�2vF
, �36�

i.e., �e-ph�Ti. Here, vF is the Fermi velocity and ks is a
constant used to fit �e-ph to the value following from the
measured reflectivity of Al at room temperature. The fit
yields ks=9.4.

On the other hand, Fisher et al. �14� apply a more sophis-
ticated theory to investigate the electron-phonon collision
frequency �38�. The result of their calculations �Eq. �16� of
Ref. �14�� exhibits some numerical prefactors that were fitted
to experimental dc resistivity data given in �39�.

In Fig. 7, we show the dynamic collision frequency over a
broad temperature range. From our results presented above,
we selected Re�ei for a laser wavelength of �=800 nm in the
weak field case. Furthermore, curves for �e-ph according to
Eq. �36� above and to Eq. �16� of Ref. �14�, respectively, are
presented. Obviously, both curves agree concerning the pro-
portionality �e-ph�Ti, however the slope is different. This
difference is apparently connected with the choice of experi-
mental data to fit the numerical prefactors. Note that, in Ref.
�14�, the case of a constant ion temperature is considered
while we apply their formula for an isothermal plasma.

The phonon picture is of course not well suited for tem-
peratures exceeding the melting temperature of about
1000 K, however it can serve as a guide for the principal
behavior of the collision frequency up to about 10000 K. The
dashed line represents the upper limit used as cutoff criterion
in �13�. Above this line, the electron mean free path is
smaller than the mean interionic distance, �e�r0 �i.e., �
�ve /r0 with the characteristic electron velocity ve= �vF

2

+kBTe /me�1/2�. Of course, this criterion gives only a qualita-
tive measure, but it agrees with our result within a factor �2.

FIG. 5. Real part of the electron-ion collision frequency vs laser
frequency for aluminum at solid-state density and a temperature of
T=106 K for several laser intensities.

FIG. 6. Real part of the electron-ion collision
frequency vs electron temperature for aluminum,
Ti=Te, for two different laser wavelengths: �a�
�=800 nm, �b� �=32 nm, and several laser in-
tensities. In addition, the limiting case for high T
�Spitzer formula� is shown.
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In order to obtain a single curve for the collision fre-
quency over the whole temperature range, a smooth connec-
tion of the results for �ei and �e-ph via the fourth-order power
mean can be used that yields the thick solid curve in Fig. 7.
This should be justified by the fact that the curves cross each
other in a temperature region where the validity of both is, in
principle, still assured.

IV. CONCLUSIONS AND OUTLOOK

In this paper, we have presented a theoretical scheme for
the quantum kinetic description of collisional absorption in
dense plasmas. A general expression for the electron-ion col-
lision frequency �ei��� valid for arbitrary field strengths �in
the nonrelativistic domain� has been derived and discussed

both in the weak-field �linear response� and high-field re-
gime. Numerical results for �ei��� have been shown for
dense aluminum covering a broad temperature range, espe-
cially the region of intermediate temperatures that cannot be
described by the high- and low-temperature asymptotes.
Ionic correlations affect the electron-ion collision frequency
quantitatively at not too high temperatures and small laser
frequencies �corresponding to long wavelengths�. On the
other hand, our results show a significant field influence for
small laser frequencies and moderate to low temperatures.
However, the linear response description turns out to be valid
up to rather high fields, especially for short-wavelength la-
sers.

Corresponding to the discussion of approximations used
in Sec. III, the following extensions of the approach have to
be investigated in the future: �i� using HNC simulation re-
sults for the ionic structure factor also for the �experimen-
tally more realistic� case of a two-temperature plasma with
Ti�Te, �ii� including the dielectric function of the electrons
ee in an approximation beyond RPA �e.g., the Gould-DeWitt
scheme�, and �iii� including the electron-ion interaction tak-
ing into account the finite extension and the internal charge
structure of the ion, e.g., using a pseudopotential. Further-
more, the connection to the electron-phonon interaction in
the solid state has to be improved in the temperature region
where both concepts overlap in order to describe the low-
temperature range, too.

To summarize, our approach to collisional absorption in
laser fields provides an efficient tool for studies of warm
dense matter. It can also be used as input in hydrodynamic
simulations of solid density matter at arbitrary temperatures.
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